POTENTIAL GROUND AND SURFACE WATER IMPACTS ASSOCIATED WITH THE USE OF ETHANOL AS A FUEL OXYGENATE

David W. Rice

Environmental Protection Department Lawrence Livermore National Laboratory

Briefing to the California Environmental Policy Council

Sacramento, California January 18, 2000

Potential Ground and Surface Water Impacts – Introduction

- What we did to evaluate potential ground and surface water impacts associated with the use of ethanol as a fuel oxygenate:
 - Began the development of comprehensive life-cycle model.
 - Performed literature reviews of transport and fate of ethanol and benzene in the presence of ethanol.
 - Used screening models to evaluate ground and surface water impacts.
 - Evaluated chemical analysis techniques used to measure ethanol in the environment.
 - Examined the environmental properties of alkylates.
 - Submitted our findings to peer review.

Potential Ground and Surface Water Impacts – Authors

University of California, Davis

John Reuter, Ph.D. Brant Allen

University of Iowa

Pedro Alvarez, Ph.D. Craig Hunt, Ph.D.

Clarkson University

Susan Powers, Ph.D. Stephen Heermann, Ph.D.

Lawrence Livermore National Laboratory

Harry Beller, Ph.D.

Jeffrey Daniels, Ph.D.

Brendan Dooher, Ph.D.

Staci Kane, Ph.D.

Carolyn Koester, Ph.D.

David Layton, Ph.D.

Alfredo Marchetti, Ph.D.

Walt McNab, Ph.D.

David W. Rice, Project Director

Potential Ground and Surface Water Impacts – Reviewers

University of California, Santa Barbara <u>Donald Bren School of Environmental Science and Mangement</u> Patricia Holden, Ph.D.

University of California, Los Angeles

<u>Civil and Environmental Engineering Department</u>

Michael Stenstrom, Ph.D.

California Institute of Technology
Executive Officer of Environmental Engineering Science,

James Irvine Professor of Environmental Science

Michael Hoffman, Ph.D.

Potential Ground and Surface Water Impacts – Release Scenarios

- Release scenarios were developed based on the production, distribution, and use of ethanol as a fuel oxygenate.
 - Not all release scenarios were evaluated.
- In the time allowed, the following scenarios were evaluated because they were most likely to have impact:
 - Leaking under ground fuel tank releases.
 - Rail tank car release to a river.

Potential Ground and Surface Water Impacts – Ethanol Transport and Fate

- The impact of ethanol co-solubility effects on benzene dissolution will likely be very minor.
- Ethanol is degraded very rapidly in soils and water.
 - Degradation half-life in ground water ranges between 1.3 and 7 days, depending on electron acceptor used.
 - Degradation half-life in surface waters is about 3.5 hrs after about a 10-hr lag.
- The preferential degradation of ethanol in groundwater may result in longer benzene plume lengths.

Potential Ground and Surface Water Impacts – Modeling of Benzene Plume Lengths

- How long may the benzene plumes increase if ethanol is used?
 - Three independent screening model assessments indicate that average benzene plumes may increase 24 – 33 % in the presence of ethanol.
- These models make two important simplifying and conservative assumptions:
 - Benzene is not degraded in the zone where ethanol is being rapidly degraded.
 - The biodegradation rate for benzene is uniform over the length of the benzene plume.
- If these assumptions are not representative of actual processes, then benzene plume lengths may be shorter than estimated by the screening models.

Potential Ground and Surface Water Impacts - Plume Conceptual Model

Potential Ground and Surface Water Impacts - Plume Conceptual Model (Cont.)

Potential Ground and Surface Water Impacts – Modeling of Benzene Plume Impacts

- What is the comparative potential impact of increased benzene plume lengths relative to MTBE?
 - A baseline potential impact was developed for benzene without ethanol present.
 - This baseline was used to compare the impacts of MTBE plumes and benzene plumes with ethanol present.
- Step 1. A baseline population of benzene plume lengths without ethanol was modeled.
 - This population compared well with a population of 500 measured historical case benzene plume lengths.
 - For the population of benzene plumes modeled, plume lengths were forecast over a 100-year period.
 - Twenty-one time intervals were used and 4000 plume lengths were developed for each time interval.

Potential Ground and Surface Water Impacts – Modeling of Benzene Plume Impacts

- Step 2. Relative location information for public drinking water wells and all known active leaking underground fuel tank sites in California was used to perform an impact analysis.
 - For each LUFT site in California, the distance between every known drinking water well within 30,000 feet of the LUFT site was calculated.
 - Based on the population of modeled plume lengths, the probability of a benzene plume reaching drinking water wells near each of these LUFT sites was calculated for each time interval.
- Step 3. These first two steps were repeated for MTBE plumes and benzene plume in the presence of ethanol.
- Step 4. A series of relative probability curves were prepared.

Potential Ground and Surface Water Impacts – Modeling of Benzene Plume Impacts (Cont.)

Potential Ground and Surface Water Impacts – Measured Benzene and MTBE Impacts

- What is the current measured benzene and impact rates?
 - The average annual percentage of public drinking water sources that are impacted from all sources, including LUFTs:
 - Benzene = 0.35%
 - MTBE = 1.17%

A caution:

- Our comparative analysis is not intended to be predictive in any regard.
- It is a screening analysis that is intended to show a relative comparison between MTBE and benzene in the presence of ethanol.

Potential Ground and Surface Water Impacts – Surface Water Impacts

- Impacts of ethanol-containing gasoline on surface water resources were also evaluated.
- The loss mechanisms for MTBE and ethanol from surface waters is different.
 - Ethanol is removed through biodegradation.
 - MTBE is removed through volatilization at the water's surface.
- The toxicity of ethanol is about 2000 time less than MTBE.
 - If there are spills of equal mass, MTBE will have much greater impact to surface water drinking supplies.
- Washout of ethanol from the atmosphere through rain may be 40 times greater than MTBE.
 - Ethanol concentrations in rain could be about 40 to 65 ppb.
 - Ethanol will be rapidly removed from rainwater through biodegradation.

Potential Ground and Surface Water Impacts – Use of Alkylates

- Alkylates are complex mixtures of branched hydrocarbons with octane ratings close to 100.
- Significant quantities of alkylates are already present in gasoline.
- Compared to MTBE, less ethanol is required to meet a specified oxygen content in gasoline.
 - The resulting octane deficit may be compensated by adding additional alkylates to gasoline that contains ethanol.

Potential Ground and Surface Water Impacts – Properties of Alkylates

- Aklylates have:
 - Low solubility in water.
 - Lower density than water.
 - High volatility.
 - Low mobility in soils.
- Properties like biodegradability or toxicity are not easily extrapolated to all alkylate compounds.
 - Cancer risk, reproductive and developmental effects have not been studied.

Potential Ground and Surface Water Impacts – Conclusions

- The water resource impacts associated with the use of ethanol will be significantly less and more manageable than those associated with the continued use of MTBE
 - The key factor is the biodegradability of ethanol compared to MTBE.
- An important question before the Council is "Will additional information change the decision to use ethanol as a fuel oxygenate or not?"

Potential Ground and Surface Water Impacts – Recommendations for Future Research

- If a decision is made to use ethanol as a fuel oxygenate, several additional analyses and experiments should be performed to help manage its use.
 - A complete life cycle analysis should be performed.
 - Experiments should be performed to evaluate the degradation of benzene by ethanol degrading microbial populations.
 - Field and laboratory studies should be performed to evaluate changes in benzene degradation rates over the length of a benzene plume.
 - A series of field sites should be identified and studied to support modeling assumptions.
 - The chemical analysis techniques used to measure ethanol in field samples should be refined to lower limits of detection.
 - Additional historical case data should be collected and analyzed.